Accelerating FPGA Designs and Design
Work: Implementing Faster Designs Faster

Bryan Penner
Xilinx FAE — Arizona and New Mexico

S XILINX

Agenda

 Understanding the Virtex5 FPGA Architecture
* Alook at how coding affects performance

 Software tools that can help increase
performance and reduce design time

S XILINX

Implementing Faster FPGA Designs Faster

Agenda

 Understanding the Virtex5 FPGA Architecture

Implementing Faster FPGA Designs Faster X XILINXQ

The Virtex-5 Family

e Family contains 4 platforms

- IVLX “ "

* High-performance logic
— LXT Platform

* High-performance logic with
lowest power serial connectivity

— SXT

 Extensive signal processing with
lowest power serial connectivity

Platform
— FXT '

» Embedded-oriented with highest
performance microprocessor and
serial connectivity

ST XILINX

Implementing Faster FPGA Designs Faster

Continuing the Drive for Innovation

Most Advanced
High-Performance
Express Fabric

36Kbit Dual-Port
Block RAM / FIFO
with Integrated

Advanced
Configuration
Options

SelectlO with
ChipSync
Technology

Integrated
System Monitor

Ethernet
MAC Blocks

25x18 DSP Slice

550 MHz Clock
Management Tile
with DCM
and PLL

PCI-Express
Endpoint Blocks

PowerPC440 3.7SGbps GTP
Processors with 6.5Gbps GTX Serial
Optimized Serial Transceivers
wWww.Xilinx.com/virtex5 Interfacing Transceivers

\‘) FXT Platform
27 XILINX

Implementing Faster FPGA Designs Faster 5

http://www.xilinx.com/virtex5

Virtex-5 Slice with 6-Input LUTSs

6-Input LUT with six independent inputs
— Four 6-input LUTSs per slice
— Two outputs per LUT
Fast Carry Chain
— addition
— subtraction
High Performance Flip Flops

— Synchronous or asynchronous active high
reset, set and clock enable

6-Input LUT configured as
— Any 6-input logic function
— 64 bit Distributed RAM
— 32 bit Shift Register

More efficient interconnect

Implementing Faster FPGA Designs Faster

'

\

- Carry

/ Chain

S XILINX

Virtex-5 DSP48E For Efficient DSP

ACOUT BCOUT PCOUT

B (18-bit)
A (25-bit) P (48-bit)
*Optional P(96-bit)

Optional Register

Routing Logie

C (48-bit)

Qptional Bipeline Register/
Routmo Logre

=
45)
e
N
=
)
=y
D) @
c
=15
@
o. .S
o
a3
o
S o2
i=)
e
=
©)

ACIN BCIN PCIN

* 96-bit output using MACC extension mode (uses 2 DSP48E slices)

Implementing Faster FPGA Designs Faster 7 . i: XII..INX.

Virtex-5 Clock Management Tile

e Upto 6 CMTs per device o T— -
— Each with2 DCMs and 1 PLL |
— No external PWR/GND pins
e DCM
— Operate from 19 MHz — 550 MHz
— Remove clock insertion delay
» “Zero delay clock buffer”

— Dynamically phase shift clocks in increments of
period/256 or with direct delay line control

e PLL
— Operate from 19 MHz — 550 MHz
— Reduces internal clock jitter
— Supports higher jitter on reference clock inputs
— Remove clock insertion delay
» “Zero delay clock buffer”
— Synthesize F_, = F;,* M/(D*O)

SIXLNX

T

Agenda

* Alook at how coding affects performance

b g rropuerese SN SIXILNX

Intro

e There Is not a single way to create a design

— Different coding styles, synthesis / implementation tool options
will lead to different results

* And no one formula will work best in all cases

e There are however guidelines that can generally
lead to Improved performance, area and power

— | am not telling you how to code your design

* | am trying to relay the ramifications and drawbacks
of some typical coding decisions

Implementing Faster FPGA Designs Faster 10 X XI”NXQ

Flip-Flops

Local set (Q=1) can be asynchronous or synchronous.

Clock Enable qualifies that the \

clock edge should be used to
store data. \ S

b
Data input - |
RST

Q

|

Data stored synchronously on a positive or negative
clock edge.

Local reset (Q=0) can be asynchronous or synchronous.

The D-input naturally connects to the output of the LUT
and leads to best density and highest performance.

N\

Initial value of Q output
will relate to the controls
used.

S XILINX

Control Priority

 Control inputs to the flip-flops have a predictable priority

Synchronous reset has highest priority

o

e Synchronous set has second priority
—4D Ql—

T rst Clock Enable has lowest priority
|

FDRSE FDCPE - flip-flop with asynchronous clear and preset.

» Write HDL code which is sympathetic to the control priorities
Do not mix synchronous and asynchronous controls as these are
not be supported

N EXXILINX

Flip-Flop Controls

e Eight bit data register with reset (global reset?)
e Reset forces output to “00000000".

e Synchronously setto “11111111"

e Input value captured when enable is high

signal reg data: std logic vector(7 downto 0);

begin
IT reset _ 1In ="1" then
reg_data <= "00000000";
elsift clk*event and clk="1"
iIf set_in ="1" then

reg_data <= data_1in;
end if;
end 1F;
end process;

byte register: process (clk, reset in)

reg data <= "11111111";
elsit enable in="1" then

e Code looks reasonable. Might assume it will require 8 FFs to implement

S XILINX

Flip-Flop Controls

data_in0

All 4 inputs of each LUT are used to
emulate the required flip-flops.

Design logic will need to %20

use other LUT and the
cost will double.

data_in0

set_in

Precedence of set
prevents clock enable.

T

D Q —L reg_data0

D Q —L reg_data0

T

T

enable_in

D Q —L reg_data0

Asynchronous clear
prevents synchronous

reset_in

set.
S XILINX

Flip-Flop Controls

Improvement : Make the reset a synchronous control.

VHDL

byte register : process (clk)
begin
iIT clk"event and clk="1" then
iIT reset_in ="1" then
reg_data <= '*00000000';
elsift set _In ="1" then
reg data <= "11111111";
elsift enable_In="1" then
reg_data <= data _1iIn;
end if;
end if;
end process;

Result: 8 flip flops of type FDRSE set_in—

enable_in—| ¢
—-datain{n}— o

— reg_data(n)

KKKKKKK mi L]
ST XILINX

Synchronous Resets

e Use of the DSP48E only possible if synchronous

resets are used

e Asynchronous resets will result in a significantly
slower Fmax and under utilization of this valuable

resource

e BlockRAMs get minimum clock-to-out by using the

output registers

— Output registers only have synchronous resets
e Unused BlockRAMs can be used for

alternative purposes

— ROMs, Large Look Up Tables, Complex logic,

State-Machines, Large Shift Registers,

Dynamic Updating Logic
— Cannot be used if design uses asynchronous resets

Implementing Faster FPGA Designs Faster

16

A

Tmrﬁgr ACOUT 4 AR

o ‘ ALUNoDE
BT_:{ 1
I I B E

T MOTsiGNoUT

25)(13 B
J l

—\ :I'}T+ = _-I E P

20

CARRYIN

<\’ EEEEEEE
)

W\
EFNEDETECT
ana\: Bypass|Mask
MULTSIGNIN®

CARRYCASCING

OFMODE
CARRYINSEL

BCIN ACIN

[paine

Each DSP48E has ~250 reg|sters all W|th synchronous reset

BRAM way (1 Lut + BRAM)

Din (35:0) Dout (35:0)

ED
SRL 32

SRL way (36 luts)
T

v
.
»
-
*e
.
.,

wR FIFO

S XILINX

How to Change to Synchronous
Resets

e [tis suggested that all new code should use synchronous resets

when a reset is necessary

 For existing code, you have 3 choices

— Leave alone

 Acknowledge the possible drawbacks of asynchronous resets

— Use synthesis switch

Synplicity:
syn clean reset

XST:
-async_to sync YES

[o

|| caes || e | Hee

Not the same as changing to synchronous reset but can help
— Manually change the asynchronous reset to a synchronous

Implementing Faster FPGA Designs Faster

17

S XILINX

What's Better than
Synchronous Resets?

S XILINX

Implementing Faster FPGA Designs Faster

Why No Resets at All?

More Free Logic Even Fewer Control Signals

S
= FD FD
5 o o a a |:> o] PReE la 7 : a
E
S 2 >
CLK €

g
ara

Async Reset Sync Reset No Reset

 Using synchronous resets frees up additional logic

— Potentially, a “free” AND and/or OR gate can be realized for
every FF in the design

» Greater register packing within Slices may be realized

— Greater flexibility for registers packing with fewer control
signals

Implementing Faster FPGA Designs Faster 19 X XILINXQ

Why No Resets at All?
No reset on LUTRAM

e Coding a reset when describing a

SRAMI6XI RAM or shift register will prevent
—D the use of LUTRAM
—|WE e The DistRAM is synchronously
B ﬁg written, but asynchronously read.
A © D o> e Follow the RAM with the dedicated
A a 4 FF to make a synchronous read
LUT4 & | and improve performance.
— 13
—12 o INIT=1234
— 11
_ SRL16E
- @ I3 e The dedicated FF has a faster
INIT=1234 e clock to out time than the SRL16E
B s LUT.
B e Synthesis should place the last
Jar © D Q> register in shift chain in the FF.
A0 L4 e The initial contents of the LUTRAM
] can be specified or zero will be the
default value.
INIT=1234

N EOXILINX

Why No Resets at All?

Routing Congestion

e Routing can be considered one of the more valuable resources

» Resets compete for the same resources as the rest of the active signals of the
design
— Including the critical paths
* Designs without resets have fewer timing paths
— By an average of 18% fewer timing paths

e Results in less runtime

Implementing Faster FPGA Designs Faster 21 X XILINX°

FPGAs Enable Massively Parallel
DSP

Example 256 TAP Filter Implementation
Programmable DSP - Sequential FPGA - Fully Parallel Implementation

Data In Data In E & a a

Co

Coefficients —

MAC Unit
256 clock
—

cycles
needed

256 operations
in 1 clock cycle Data Out

Data Out
1 GHz 500 MHz

1 clock cycle

= 4 MSPS

= 500 MSPS

256 clock cycles

Implementing Faster FPGA Designs Faster 22 - g XII..ENX.

Parallel Adder Tree Implementation
Consumes FPGA resources

Parallel Adder Tree Implementatlon

Data In
B NS BN BN BE N E
Co 01»9 CZ—»QCB—»? »Q »9 CG»Q C30 —»
Consumes Logic Variable J
Implement Adders \?/ ___Latency

o 32 TAP filter implementation will consume pata out

1,461 logic cells to implement adders in Fabric and Routing May
fabric
Reduce Performance

2XILINX

o

Implementing Faster FPGA Designs Faster

Parallel Implementation Consumes
Zero Logic Resources

Data Qut

o 32 TAP filter implementation using 32 XtremeDSP Slices
e Guaranteed 550 MHz operation

e HDL coding examples in Virtex-5 FPGA XtremeDSP
Design Considerations User Guide

arallel Adder Cascade Implementation in DSP48 Column

Implementing Faster FPGA Designs Faster . g XII..INX.

http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf

Pipelining
 Pipelining cannot be an afterthought

— Adding pipeline registers “later” is not easy

— Number and placement of registers need to be considered during initial
coding

 Too little pipelining will result in under-performing designs

e Maximum performance seen when...

— There are 6 inputs to a logic function
* This is different than previous architectures due to the 6-LUT
— Extra caution is taken around Multipliers and RAMs

Implementing Faster FPGA Designs Faster 25 X XILINXQ

Where to find more information

e WP231 - HDL Coding Practices to Accelerate Design Performance

e WP272 - Get Smart About Reset: Think Local Not Global

e WP271 - Saving Costs with the SRL16E

e WP333 - FIFOs in Virtex-5 FPGAs

o WP284 - Advantages of Virtex-5 FPGA 6-Input LUT Architecture

e WP275 - Get your Priorities Right — Make Your Design up to 50% Smaller

» WP248 - Retargeting Guidelines for Virtex-5 FPGAs

o WP245 - Achieving Higher System Performance with the Virtex-5 Family of FPGAs
e Synthesis and Simulation Design Guide in Software Manual.

e Coding Examples in the Language Template

FEN R =AY) EE v [2 ¢ XE IR @] 8%5HS
B [IROM -l
Iél--SShileegisters -- Define & temporary signal that is of type std logic_wvector |
= T4 Dynamic Shift SRLTE —-- Where width is the nuwber of bits to shift
e <zlocks
[~ [Parallel Load, Serial In, Serial | }I;Z;ciiss (=R)
Serltalln,.SenaIDut if <clockr'event and <clock>='1l' then
P Cea J if <clock ensble> = '1' then
--[:IState-Mac:hines <tmp_sig> <= <tmp_sig> (<vidth>-2 downto 0} & <input>;
[~ [Tristate Buffers end if;

H- 1771 Conditional =l end if:

Implementing Faster FPGA Designs Faster

26 S XILINX

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/sim/sim.pdf

Agenda

 Software tools that can help increase
performance and reduce design time

Implementing Faster FPGA Designs Faster 27 X XILINXQ

Timing Constraints

» All designs should have timing constraints for IO, clocks and multi-cycle paths
e Implementation tools are timing driven
— Without timing constraints implementation only concern is runtime
* Synthesis tools are also timing driven
— Synthesis will make logic decisions based on timing constraints
» See the Constraints Guide in Software Manual
» Language Template in Project Navigator has constraint examples

OFFSET IN PERIOD OEFSET OUT
x > @—-
' o) OouT1
CLK > o 1 Level of Logic
Y > 2 Levels of Logic oUT2
Z<0:9> -

FROM:TO

Implementing Faster FPGA Designs Faster 28 X XII_INX.

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/cgd/cgd.pdf

Strategy-Based Implementation

 Software switches can impact
performance, area and power

e Automatically identifies optimal
Implementation algorithm based on design
goals

Balanced: (Default) Delivers balance of
performance and runtime

Timing Performance: Delivers optimal
performance

Minimum Runtime: Focuses on minimizing runtime

Area Reduction: Slice Reduction with minimal
impact to performance

Power Optimization: Minimizes dynamic power
with minimal impact to performance

Implementing Faster FPGA Designs Faster 29

Set the Goal instead of multiple
iImplementation settings

= Design Goals & Strategies g|

Last applied strategy: Design Goal: Timing Performance
Strategy: Performance with [0B Packing

Dezign goal: | Timing Performance

“
Shrategy: Performance with I0B Packing W [:]

Dezcrption:

"Thiz timing perfarmance strategy will try to achiewve timing closure while
packing registers into the I0B s if possible. Usze this strategy if in timing
clozure, pour dezign has tight 1/0 timing requirements. [IF pou don't meet
timing with this stratequ, consider ting Smart=<plarer. "

| wiew. || Edit. | [Unlack

| ok || oese || Ak || Hep |

S XILINX

SmartCompile Technology

e SmartPreview
— Provides visibility into implementation
— Create bitstream for lab debug
— Preserve latest results as snapshot
and continue processing
e SmartGuide
— Timing preservation in the midst of changes
— Average 2x to 4x faster re-implementation
runtimes for small design changes
* Partitions

— Implementation preservation in the midst of
changes

— Allows flexibility to preserve routing,
placement, synthesis

Implementing Faster FPGA Designs Faster 30

Previous Current
ca L
T —— SmartGuide
EEEEEEEN] I
HHH : -
| —
- H E ——
=] EEEEI =
| =44
SmartPreview —
Ziwed m

I— .

Exact Preservation

|..‘

Partitions
1

S XILINX

PlanAhead: Floorplannlng & I\/Iore

Increase performance through hierarchical
floorplanning

— Floorplan prior to physical implementation
— Guide place and route toward better results
— Easily view utilization of hierarchy
— Create Area Constraints quickly
Analyze Multiple Results from ISE
— Highlight failing timing paths from post-route timing
analysis
Analyze timing early through TimeAhead
— Quickly identify, select and constrain critical path logic
ExploreAhead
— Run multiple implementations with different
implementation switches.
Simplify managing complex interface
between FPGA and PCB with PinAhead
— Facilitates early and intelligent pinout definition

— Performs WASSO & Design Rule Checks early
in design cycle

— HDL & CSV Import — Export

www.Xllinx.com/planahead

Implementing Faster FPGA Designs Faster 31

B R R e |G e AT R

S XILINX

http://www.xilinx.com/planahead

System Generator and AccelDSP

System Modeling Algorithm Development

Platform Studio™ MATLAB® ! AccelDSP™

Simulink®

- Xilinx
~ System Generator
for DSP

Verification & Debug HDL Generation & Simulation
- Hf_trdturtlrare ChipScope™ Pro ISE Foundation™ ModelSim®
inthe
Loop

www.Xilinx.com/dsp

Implementing Faster FPGA Designs Faster 32 X XI“NX.

http://www.xilinx.com/dsp

Intellectual Property Cores

Optimized for Performance or Area

SPI-4 XAUI

SPI-3 PCI Express
XGMII Aurora

Many more ... ~ Many more ..

Processor

Peripherals Infrastructure
Interrupt ControllerCoreConnect Bus

Advanced Math

Reed-Solomon Multipliers

Turbo Codecs MAC UARTS Arbiter
Virterbi Divid Timer Bridge
Video |:i||\t/ér§r - , GPIO Memory controllers
Wireless CORDIC http://www.xilinx.com/ipcenter SPI Soft processors
Many More Many more Many more ... Software IP

7 http:/lwww.xilinx.com/memory Many more ...

Implementing Faster FPGA Designs Faster 33 - X XII.INX.

http://www.xilinx.com/memory
http://www.xilinx.com/ipcenter

Signal Probing with FPGA Editor

I I=TEd
. . IAII Components j
FPGA Editor shows design

F g

Iayout On devlce Name Site Type #Pins ﬂ
1 CE E1 [1 m
. . . 2 CE_REG1 ILOGIC_% [ILOGIC |4 m
Probe internally in design | R T
Fil ' 4 CLK_126_0UT [OLOGIC_ 4 OLOGIC |5 m
. . —— / : 5 CLK_125_0UT |R10 |0BS 1 [
W|th0Ut rerunnlng " ; = B CLK_125_0UT |R11 10BM 2 [ne
. . — 7 CLK_500_0UT [OLOGIC ¢ 0LOGIC |5 m
Im ple m entatl On Pin Name | Net Name |Pin Numberi]| Delay | Other Possi| Hilited | add 8 CLK_500_0UT [J4 I0BS 1 [ne
3 CLK_500_0UT [J5 I0BM |2 m
- Delet 10 ok ca 108 1 m
F' d ; | ; | d x| I Gz CE R (- T
|n |nterna Slgna a.n ro ute Fin Name Aniay Window Edit | Lall 12 COUNT_OUT_ [H13 10BS 1 [
. | Don't pan o zaom 4| 13 COUNT_OUT_ |G13 I0BM 2 [
to spare pin ' S| (e e s o
ne

['CE_REG" Fiter Um—null 16 |COUNT_OUT_ |SLICE_%a |SLICEM |10 Ej
Bitgen.. | D

&
x

— Automatically

- Manua”y Hite

. — Select Pin Mumber m
Delay from probe point to - —

selected pin automatically || —— j“
reported S +H

Good for probing a handful of

S|gnals Found compatible I0 standard "LVITL" at =ite "Al". PrObe

Building the delav mediator. ..
Fouted net to Al. pin delay = 1.106n= / Route
Frobe of net "CE_REG1" routed to Al with delay 1.106ns
Delay

Implementing Faster FPGA Designs Faster 34 X XI”N}(&

Chipscope Pro Logic Analyzer

4

Virtex-5

www.Xilinx.com/chipscope

Access ChipScope cores via JTAG or user-defined Trace port

Configure FPGA, define trigger conditions, and view data

Chipscope uses unused BRAM in the design to store data

Not getting enough data? Use Agilent scope with FPGA Dynamic Probe

Implementing Faster FPGA Designs Faster 35 X XII_INX.

ChipScope Pro Serial 10 Toolkit

ChipScope Pro IBERT core embedded within
the design to provide on-chip access
Real-time control of each GTP

GTP status and control

BERT status and control

Adjust clock settings and line rate

Control TX and RX settings

Edit MGT attributes or DRP directly

Dump DRP attributes to screen

Dump DRP attributes to UCF file to
include in end design

Implementing Faster FPGA Designs Faster

&l ChipScope Pro Analyzer [

P 1

9]0/

File View JTAG Chain
(=

window Help

Project: dspdema
JTAG Chain
DEY:0 MyDeviceD (Systerm_AC
DEV:A MyDevicel (CAVFXEN)
¢ UNIT:0 MyBERTO (BERT)
IEERT Console

@, IBERT Console- DEV:1 MyDevice 1 (XC4VFX60) UNIT:0 MyIBERTO (IBERT)

[

TH User Clock Source MGT1068 T Clock MGT105A T Clock

| MGT1058 | MGT1 054 I MGT1038 I MGT103A

% MGT Settings
MGT Alias MGT1058 MGT1054 MGT103B MGT1034
MGT Location GT11_x0v2 GT11_0v3 GT11_x0r4 GT11_X0v5
MGT Link Status LINK OK LINK OK LINK OK LINK OK
TH Lock Locked Locked Locked Locked
R Lock Lacked Locked Lacked Lacked
MGT Loophack bode [Serial [+] [Setial [+] [Serial [=] [Serial]
MGT Channel Reset Reset Reset Reset Reset
Edit DRP Edit Edit. Edit Edit
Dump DRF Dump DRP. Dump DRP, Dump DRP Dump DRP.
Export UCF Export Export Export Export
Edit Clock Settings Edit.. Edit... Edt.. Edit..
Falric Width 16 hits 16 hits 16 hits 16 hits

% BERT Settings
R Bit Error Ratio 7.626E-004 7 B30E-004 7.629E-004 7.642E-004
R Line Rate 2.500 Ghps 2500 Gbps 2.500 Ghps 2.500 Ghps
Ry Received Words 1.833E010 1.633E010 1.833E010 1.833E010
Ry Total Bt Errors 1.397E007 1.388E007 1.398E007 1.4D0E007
BERT Reset Reset Reset Reset Reset

¢ TX Settings

MGT1038 T Clock MGT103ATH Clock

TH PM& Clock Select [MGTCLKI0S [=] [MGTCLKIOS [[MGTCLKIOS [w]| MGTCLKIDS (=]
TH Data Pattern [[2cClack [w] [1/Z€Ciock [»] [Clack [w]|[(2XClock =]
T Encoding [Mane [=] [mone [=] [Mone [=] [none [=]
Inver T Polarity = =] = =]
Inject T Error Inject Inject Inject Inject
¢ RX Settings
R User Clock Source RXRECCLK RXRECCLK RXRECCLK RXRECCLK
R¥ PMA Clock Select [MGTCLKI06 || [MGTCLKI0S |=| [MGTCLKI06 |w]| [MGTCLKI06 |[w]
R¥ Data Pattern [1iz¥ Clack [=] [z Clock [=] [A72xClack [=] [172% Clock =]
R Decoding [None [=] [Mone [=] [Mone [=] [none [~]
Invert R Polatity] =] = =
BT e WU UG LIS VErsTo 11 =

that is found at hitp:fww. lowagie.comATesMPL-1.1 b4

COMMAND: open_project "C:\Demo\demoiclock_part4iclock_part4 analyze.cpj"

COMMAND: open_project "C:\Chi Pro 6.2i chi E

Reading projectfile: CAChipScope Pro 6.2 demowdspdema.cpi

S XILINX

Summary

» Many different software tools and settings that can help
Increase the performance and reduce area and power.

» Hard and soft cores that can be leveraged.

e The number one way to increase performance and
reduce area and power is to understand the basic
features of the target architecture down to the FF and
LUT.

» Best way to understand the target architecture is to......
READ, READ, READ and then READ some more!!!

S XILINX

Implementing Faster FPGA Designs Faster

Appendix

S XILINX

Implementing Faster FPGA Designs Faster

Where to find more information

Xilinx Support Home Page
— mysupport.xilinx.com

e Virtex-5 FPGA Data Sheet: DC and Switching Characteristics
— http://www.xilinx.com/support/documentation/data sheets/ds202.pdf

e Virtex-5 FGPA User Guide
— http:/lwww.xilinx.com/support/documentation/user quides/ugl190.pdf

e Virtex-5 FPGA XtremeDSP Design Considerations User Guide
— http:/lwww.xilinx.com/support/documentation/user guides/ugl93.pdf

e Virtex-5 FPGA XtremeDSP Design Considerations User Guide
— http:/lwww.xilinx.com/support/documentation/user quides/ug198.pdf

Implementing Faster FPGA Designs Faster 39 X XILINXQ

http://www.xilinx.com/
http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug198.pdf

New Video Demos

Streaming videos are available at http://www.xilinx.com/design.

* Improving Design Performance with PlanAhead

e Optimizing Implementation Results using ExploreAhead

e Improving the FGPA on PCB Integration with PinAhead

» Partial Reconfiguration Design using PlanAhead

e (Get the Most Out of Your Design Using XST Synthesis Strategies

* Reduce FPGA Verification Time Using New Simulation Features

e Improve Productivity Using Multiple Constraint Files

e Simplify Entry and Analysis of I/O Timing Constraints

* Improve Time-to-Market Using Partitions and SmartGuide

e Improve DSP and Embedded Design Productivity

e Optimize FPGA Performance Using Goals, Strategies, and SmartXplorer

* Improve Productivity Using the EDA Standard Tool Command Language (Tcl)
e Fine-Tune FPGA Power Budgets Using New Power Analysis and Optimization
e Video demo for XPE: http://www.demosondemand.com/clients/xilinx/001/page/index_destools.asp
* Improve Configuration Ease of Use with Project Navigator and iIMPACT

Implementing Faster FPGA Designs Faster 40 X XILINXQ

http://www.demosondemand.com/clients/xilinx/001/page/index_destools.asp
http://www.xilinx.com/design

	MAPLD��Accelerating FPGA Designs and Design Work: Implementing Faster Designs Faster ��Bryan Penner�Xilinx FAE – Arizona and N
	Agenda
	Agenda
	The Virtex-5 Family
	Continuing the Drive for Innovation
	Virtex-5 Slice with 6-Input LUTs�
	Virtex-5 DSP48E For Efficient DSP
	Virtex-5 Clock Management Tile
	Agenda
	Intro
	Flip-Flops
	Control Priority
	Flip-Flop Controls
	Flip-Flop Controls
	Flip-Flop Controls
	Synchronous Resets
	How to Change to Synchronous Resets
	What’s Better than Synchronous Resets?
	Why No Resets at All?�More Free Logic Even Fewer Control Signals
	Why No Resets at All?�No reset on LUTRAM�
	Why No Resets at All?�Routing Congestion
	FPGAs Enable Massively Parallel DSP
	Parallel Adder Tree Implementation Consumes FPGA resources
	Parallel Implementation Consumes Zero Logic Resources
	Pipelining
	Where to find more information
	Agenda
	Timing Constraints
	Strategy-Based Implementation
	SmartCompile Technology
	PlanAhead: Floorplanning & More
	System Generator and AccelDSP
	Intellectual Property Cores
	Signal Probing with FPGA Editor
	Chipscope Pro Logic Analyzer
	ChipScope Pro Serial IO Toolkit
	Summary
	Appendix
	Where to find more information
	New Video Demos

