
MAPLDMAPLD

Accelerating FPGA Designs and Design Accelerating FPGA Designs and Design
Work: Implementing Faster Designs FasterWork: Implementing Faster Designs Faster

Bryan Penner
Xilinx FAE – Arizona and New Mexico

Implementing Faster FPGA Designs Faster 2

Agenda

• Understanding the Virtex5 FPGA Architecture
• A look at how coding affects performance
• Software tools that can help increase

performance and reduce design time

Implementing Faster FPGA Designs Faster 3

Agenda

• Understanding the Virtex5 FPGA Architecture
• A look at how coding affects performance
• Software tools that can help increase

performance and reduce design time

Implementing Faster FPGA Designs Faster 4

• Family contains 4 platforms
– LX

• High-performance logic
– LXT

• High-performance logic with
lowest power serial connectivity

– SXT
• Extensive signal processing with

lowest power serial connectivity
– FXT

• Embedded-oriented with highest
performance microprocessor and
serial connectivity

The Virtex-5 Family

LX
PlatformPlatform

LXT
PlatformPlatform

SXT
PlatformPlatform

FXT
PlatformPlatform

Implementing Faster FPGA Designs Faster 5

Continuing the Drive for Innovation

LXT/SXT Platform

FXT Platform

LXT/SXT/FXT Platforms

Common to All Platforms

Most Advanced
High-Performance

Express Fabric

Most Advanced
High-Performance

Express Fabric 36Kbit Dual-Port
Block RAM / FIFO

with Integrated
ECC

36Kbit Dual-Port
Block RAM / FIFO

with Integrated
ECC

SelectIO with
ChipSync

Technology
and XCITE DCI

SelectIO with
ChipSync

Technology
and XCITE DCI

550 MHz Clock
Management Tile

with DCM
and PLL

550 MHz Clock
Management Tile

with DCM
and PLL

25x18 DSP Slice25x18 DSP Slice

Advanced
Configuration

Options

Advanced
Configuration

Options

10/100/1000 Mbps
Ethernet

MAC Blocks

10/100/1000 Mbps
Ethernet

MAC Blocks

PCI-Express
Endpoint Blocks

PCI-Express
Endpoint Blocks

3.75Gbps GTP
Serial

Transceivers

3.75Gbps GTP
Serial

Transceivers

Integrated
System Monitor

Integrated
System Monitor

PowerPC440
Processors with

Optimized
Interfacing

PowerPC440
Processors with

Optimized
Interfacing

6.5Gbps GTX
Serial

Transceivers

6.5Gbps GTX
Serial

Transceiverswww.xilinx.com/virtex5

http://www.xilinx.com/virtex5

Implementing Faster FPGA Designs Faster 6

Virtex-5 Slice with 6-Input LUTs
• 6-Input LUT with six independent inputs

– Four 6-input LUTs per slice
– Two outputs per LUT

• Fast Carry Chain
– addition
– subtraction

• High Performance Flip Flops
– Synchronous or asynchronous active high

reset, set and clock enable
• 6-Input LUT configured as

– Any 6-input logic function
– 64 bit Distributed RAM
– 32 bit Shift Register

• More efficient interconnect
Carry
Chain

Virtex-5
Slice

6-LUT

6-LUT

6-LUT

6-LUT

Implementing Faster FPGA Designs Faster 7

ACIN BCIN

ACOUT BCOUT

PCIN

PCOUT

Op
tio

na
l P

ip
eli

ne
 R

eg
ist

er
/

Ro
ut

in
g

Lo
gi

c
Op

tio
na

l P
ip

eli
ne

 R
eg

ist
er

/
Ro

ut
in

g
Lo

gi
c

Op
tio

na
l P

ip
eli

ne
 R

eg
ist

er
/

Ro
ut

in
g

Lo
gi

c
Op

tio
na

l P
ip

eli
ne

 R
eg

ist
er

/
Ro

ut
in

g
Lo

gi
c

Ro
ut

in
g

Lo
gi

c
Ro

ut
in

g
Lo

gi
c

Op
tio

na
l R

eg
ist

er
Op

tio
na

l R
eg

ist
er

Mu
lti

pl
ier

P (48-bit)
*Optional P(96-bit)

C (48-bit)

B (18-bit)
A (25-bit)

=

48-bit

Virtex-5 DSP48E For Efficient DSP

* 96-bit output using MACC extension mode (uses 2 DSP48E slices)

Implementing Faster FPGA Designs Faster 8

CMTCMT
• Up to 6 CMTs per device

– Each with 2 DCMs and 1 PLL
– No external PWR/GND pins

• DCM
– Operate from 19 MHz – 550 MHz
– Remove clock insertion delay

• “Zero delay clock buffer”
– Dynamically phase shift clocks in increments of

period/256 or with direct delay line control
• PLL

– Operate from 19 MHz – 550 MHz
– Reduces internal clock jitter
– Supports higher jitter on reference clock inputs
– Remove clock insertion delay

• “Zero delay clock buffer”
– Synthesize Fout = Fin * M/(D*O)

Virtex-5 Clock Management Tile

Implementing Faster FPGA Designs Faster 9

Agenda

• Understanding the Virtex5 FPGA Architecture
• A look at how coding affects performance
• Software tools that can help increase

performance and reduce design time

Implementing Faster FPGA Designs Faster 10

Intro
• There is not a single way to create a design

– Different coding styles, synthesis / implementation tool options
will lead to different results

• And no one formula will work best in all cases
• There are however guidelines that can generally

lead to improved performance, area and power
– I am not telling you how to code your design

• I am trying to relay the ramifications and drawbacks
of some typical coding decisions

Flip-Flops

D Q

SET

RST

CE

Initial value of Q output
will relate to the controls
used.

Data stored synchronously on a positive or negative
clock edge.

Data input

Clock Enable qualifies that the
clock edge should be used to
store data.

Local reset (Q=0) can be asynchronous or synchronous.

Local set (Q=1) can be asynchronous or synchronous.

The D-input naturally connects to the output of the LUT
and leads to best density and highest performance.

D Q

Control Priority

D Q

SET

RST

CE

FDRSE

Synchronous reset has highest priority

Synchronous set has second priority

Clock Enable has lowest priority

FDCPE - flip-flop with asynchronous clear and preset.

• Write HDL code which is sympathetic to the control priorities
• Do not mix synchronous and asynchronous controls as these are

not be supported

• Control inputs to the flip-flops have a predictable priority

Flip-Flop Controls

byte_register: process (clk, reset_in)
begin
if reset_in ='1' then

reg_data <= "00000000";
elsif clk'event and clk='1' then
if set_in ='1' then

reg_data <= "11111111";
elsif enable_in='1' then

reg_data <= data_in;
end if;

end if;
end process;

signal reg_data: std_logic_vector(7 downto 0);

• Eight bit data register with reset (global reset?)
• Reset forces output to “00000000”.
• Synchronously set to “11111111”
• Input value captured when enable is high

• Code looks reasonable. Might assume it will require 8 FFs to implement

Flip-Flop ControlsT

D Q

CLR

reset_in

reg_data0

set_in

data_in0

All 4 inputs of each LUT are used to
emulate the required flip-flops.

Design logic will need to
use other LUT and the

cost will double.

Asynchronous clear
prevents synchronous
set.

enable_in

Precedence of set
prevents clock enable.

D Q

CLR

reg_data0data_in0

D Q

CLR

reg_data0data_in0

Flip-Flop Controls

Ken Chapman
(Xilinx UK) 2003

byte_register : process (clk)
begin
if clk'event and clk='1' then
if reset_in ='1' then

reg_data <= "00000000";
elsif set_in ='1' then

reg_data <= "11111111";
elsif enable_in='1' then

reg_data <= data_in;
end if;

end if;
end process;

Improvement : Make the reset a synchronous control.

T

Result: 8 flip flops of type FDRSE
D Q

SET
CE

reg_data(n)

set_in

data_in(n)
enable_in

reset_in
RST

VHDL

Implementing Faster FPGA Designs Faster 16

Synchronous Resets
• Use of the DSP48E only possible if synchronous

resets are used
• Asynchronous resets will result in a significantly

slower Fmax and under utilization of this valuable
resource

• BlockRAMs get minimum clock-to-out by using the
output registers

– Output registers only have synchronous resets
• Unused BlockRAMs can be used for

alternative purposes
– ROMs, Large Look Up Tables, Complex logic,

State-Machines, Large Shift Registers,
Dynamic Updating Logic

– Cannot be used if design uses asynchronous resets

Each DSP48E has ~250 registers, all with synchronous reset

Implementing Faster FPGA Designs Faster 17

How to Change to Synchronous
Resets

• It is suggested that all new code should use synchronous resets
when a reset is necessary

• For existing code, you have 3 choices
– Leave alone

• Acknowledge the possible drawbacks of asynchronous resets
– Use synthesis switch

Not the same as changing to synchronous reset but can help
– Manually change the asynchronous reset to a synchronous

Synplicity:
syn_clean_reset

XST:
-async_to_sync YES

Implementing Faster FPGA Designs Faster 18

What’s Better than
Synchronous Resets?

Resets

Implementing Faster FPGA Designs Faster 19

Why No Resets at All?
More Free Logic Even Fewer Control Signals

• Using synchronous resets frees up additional logic
– Potentially, a “free” AND and/or OR gate can be realized for

every FF in the design
• Greater register packing within Slices may be realized

– Greater flexibility for registers packing with fewer control
signals

Async Reset Sync Reset No Reset

Why No Resets at All?
No reset on LUTRAM

I3

I1
I2

I0

O

A3

A1
A2

A0

O

WE

INIT=1234

INIT=1234

LUT4

SRAM16X1

D

D Q

• Coding a reset when describing a
RAM or shift register will prevent
the use of LUTRAM

• The DistRAM is synchronously
written, but asynchronously read.

• Follow the RAM with the dedicated
FF to make a synchronous read
and improve performance.

• The dedicated FF has a faster
clock to out time than the SRL16E
LUT.

• Synthesis should place the last
register in shift chain in the FF.

• The initial contents of the LUTRAM
can be specified or zero will be the
default value.

D Q

A3

A1
A2

A0

Q

CE

INIT=1234

SRL16E

D

Implementing Faster FPGA Designs Faster 21

Why No Resets at All?
Routing Congestion

• Routing can be considered one of the more valuable resources
• Resets compete for the same resources as the rest of the active signals of the

design
– Including the critical paths

• Designs without resets have fewer timing paths
– By an average of 18% fewer timing paths

• Results in less runtime

Implementing Faster FPGA Designs Faster 22

FPGAs Enable Massively Parallel
DSP

Data OutData Out

MAC UnitMAC Unit

CoefficientsCoefficients

Programmable DSP Programmable DSP -- SequentialSequential

1 GHz1 GHz1 GHz
256 clock cycles256 clock cycles256 clock cycles = 4 MSPS= 4 MSPS= 4 MSPS

256 clock 256 clock
cycles cycles

neededneeded

Data InData In

XX

++
RegReg

500 MHz500 MHz500 MHz
1 clock cycle1 clock cycle1 clock cycle

= 500 MSPS= 500 MSPS= 500 MSPS

Data OutData Out

FPGA FPGA -- Fully Parallel ImplementationFully Parallel Implementation

256 operations 256 operations
in 1 clock cyclein 1 clock cycle

Data InData In

XX

++

C0C0 C0C0XXC1C1 XXC2C2 XXC3C3 XXC255C255…

Example 256 TAP Filter ImplementationExample 256 TAP Filter Implementation

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Implementing Faster FPGA Designs Faster 23

Parallel Adder Tree Implementation
Consumes FPGA resources

Fabric and Routing MayFabric and Routing May
Reduce PerformanceReduce Performance

• 32 TAP filter implementation will consume
1,461 logic cells to implement adders in
fabric

Parallel Adder Tree ImplementationParallel Adder Tree Implementation
Data InData In

XX

++
C0C0 C0C0XXC1C1 XXC2C2 XXC3C3

++
++

XXC4C4 C0C0XXC5C5 XXC6C6 XXC7C7 XXC30C30 XXC31C31

++++ ++
++

Data OutData Out

++
++Consumes Logic to Consumes Logic to

Implement AddersImplement Adders
Variable Variable

LatencyLatency

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Implementing Faster FPGA Designs Faster 24

Parallel Adder Cascade Implementation in DSP48 ColumnParallel Adder Cascade Implementation in DSP48 Column

Data InData In

XX

++

XX

++
XX

++
Data OutData Out

XX

++

XX

++

XX

++

XX

++

XX

++

XX

++

• 32 TAP filter implementation using 32 XtremeDSP Slices
• Guaranteed 550 MHz operation
•

Parallel Implementation Consumes
Zero Logic Resources

HDL coding examples in Virtex-5 FPGA XtremeDSP
Design Considerations User Guide

C0C0 C1C1 C2C2 C3C3 C5C5 C6C6 C7C7 C30C30 C31C31C4C4 XX

++

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

Reg
Reg

…
.

…
.

…
.

DSP48 ColumnDSP48 Column

http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf

Implementing Faster FPGA Designs Faster 25

Pipelining
• Pipelining cannot be an afterthought

– Adding pipeline registers “later” is not easy
– Number and placement of registers need to be considered during initial

coding

• Too little pipelining will result in under-performing designs
• Maximum performance seen when…

– There are 6 inputs to a logic function
• This is different than previous architectures due to the 6-LUT

– Extra caution is taken around Multipliers and RAMs

Implementing Faster FPGA Designs Faster 26

Where to find more information
• WP231 – HDL Coding Practices to Accelerate Design Performance
• WP272 – Get Smart About Reset: Think Local Not Global
• WP271 – Saving Costs with the SRL16E
• WP333 – FIFOs in Virtex-5 FPGAs
• WP284 – Advantages of Virtex-5 FPGA 6-Input LUT Architecture
• WP275 – Get your Priorities Right – Make Your Design up to 50% Smaller
• WP248 – Retargeting Guidelines for Virtex-5 FPGAs
• WP245 – Achieving Higher System Performance with the Virtex-5 Family of FPGAs
• Synthesis and Simulation Design Guide in Software Manual.
• Coding Examples in the Language Template

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/sim/sim.pdf

Implementing Faster FPGA Designs Faster 27

Agenda

• Understanding the Virtex5 FPGA Architecture
• A look at how coding affects performance
• Software tools that can help increase

performance and reduce design time

Implementing Faster FPGA Designs Faster 28

Timing Constraints
• All designs should have timing constraints for IO, clocks and multi-cycle paths
• Implementation tools are timing driven

– Without timing constraints implementation only concern is runtime
• Synthesis tools are also timing driven

– Synthesis will make logic decisions based on timing constraints
• See the Constraints Guide in Software Manual
• Language Template in Project Navigator has constraint examples

OUT1
X

Y

Z<0:9>

OUT2
2 Levels of Logic

PERIODOFFSET IN

FROM:TO

OFFSET OUT

1 Level of Logic

QD QD

CLK

http://toolbox.xilinx.com/docsan/xilinx10/books/docs/cgd/cgd.pdf

Implementing Faster FPGA Designs Faster 29

Strategy-Based Implementation

• Software switches can impact
performance, area and power

• Automatically identifies optimal
implementation algorithm based on design
goals

– Balanced: (Default) Delivers balance of
performance and runtime

– Timing Performance: Delivers optimal
performance

– Minimum Runtime: Focuses on minimizing runtime
– Area Reduction: Slice Reduction with minimal

impact to performance
– Power Optimization: Minimizes dynamic power

with minimal impact to performance

Set the Goal instead of multiple
implementation settings

Implementing Faster FPGA Designs Faster 30

SmartCompile Technology

• SmartPreview
– Provides visibility into implementation
– Create bitstream for lab debug
– Preserve latest results as snapshot

and continue processing
• SmartGuide

– Timing preservation in the midst of changes
– Average 2x to 4x faster re-implementation

runtimes for small design changes
• Partitions

– Implementation preservation in the midst of
changes

– Allows flexibility to preserve routing,
placement, synthesis SmartPreview Partitions

SmartGuide

Previous Current
Exact Preservation

Implementing Faster FPGA Designs Faster 31

PlanAhead: Floorplanning & More
• Increase performance through hierarchical

floorplanning
– Floorplan prior to physical implementation
– Guide place and route toward better results
– Easily view utilization of hierarchy
– Create Area Constraints quickly

• Analyze Multiple Results from ISE
– Highlight failing timing paths from post-route timing

analysis
• Analyze timing early through TimeAhead

– Quickly identify, select and constrain critical path logic
• ExploreAhead

– Run multiple implementations with different
implementation switches.

• Simplify managing complex interface
between FPGA and PCB with PinAhead

– Facilitates early and intelligent pinout definition
– Performs WASSO & Design Rule Checks early

in design cycle
– HDL & CSV Import – Export

www.xilinx.com/planahead

http://www.xilinx.com/planahead

Implementing Faster FPGA Designs Faster 32

System Generator and AccelDSP

www.xilinx.com/dsp

http://www.xilinx.com/dsp

Implementing Faster FPGA Designs Faster 33

Intellectual Property Cores

http://www.xilinx.com/memory

SystemIO
Serial
10 &1 GE MACs
Ethernet PHYs
XAUI
PCI Express
Aurora
Many more …

Parallel
PCI
PCI-X
SPI-4
SPI-3
XGMII
Many more …

DSP & Math
Math
Multipliers
MAC
Divider
Filters
CORDIC
Many more …

Advanced
Reed-Solomon
Turbo Codecs
Virterbi
Video
Wireless
Many More …

Processor
Infrastructure
CoreConnect Bus
Arbiter
Bridge
Memory controllers
Soft processors
Software IP
Many more …

Peripherals
Interrupt Controller
UARTs
Timer
GPIO
SPI
Many more …

General Purpose
CORE Generator
Building Blocks
Memory Generators
IOB Configurations
Arithmetic and Shifters
Registers
Buffers
Many More …

Optimized for Performance or Area

http://www.xilinx.com/ipcenter

http://www.xilinx.com/memory
http://www.xilinx.com/ipcenter

Implementing Faster FPGA Designs Faster 34

Signal Probing with FPGA Editor
• FPGA Editor shows design

layout on device
• Probe internally in design

without rerunning
implementation

• Find internal signal and route
to spare pin

– Automatically
– Manually

• Delay from probe point to
selected pin automatically
reported

• Good for probing a handful of
signals Probe

Route
Delay

Implementing Faster FPGA Designs Faster 35

Chipscope Pro Logic Analyzer

• Access ChipScope cores via JTAG or user-defined Trace port
• Configure FPGA, define trigger conditions, and view data
• Chipscope uses unused BRAM in the design to store data
• Not getting enough data? Use Agilent scope with FPGA Dynamic Probe

Virtex-5

www.xilinx.com/chipscope

Implementing Faster FPGA Designs Faster 36

ChipScope Pro Serial IO Toolkit
• ChipScope Pro IBERT core embedded within

the design to provide on-chip access
• Real-time control of each GTP

– GTP status and control
– BERT status and control
– Adjust clock settings and line rate
– Control TX and RX settings

• Edit MGT attributes or DRP directly
– Dump DRP attributes to screen
– Dump DRP attributes to UCF file to

include in end design

Implementing Faster FPGA Designs Faster 37

Summary

• Many different software tools and settings that can help
increase the performance and reduce area and power.

• Hard and soft cores that can be leveraged.
• The number one way to increase performance and

reduce area and power is to understand the basic
features of the target architecture down to the FF and
LUT.

• Best way to understand the target architecture is to……
READ, READ, READ and then READ some more!!!

Implementing Faster FPGA Designs Faster 38

Appendix

Implementing Faster FPGA Designs Faster 39

Where to find more information
• Xilinx Support Home Page

– mysupport.xilinx.com

• Virtex-5 FPGA Data Sheet: DC and Switching Characteristics
– http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf

• Virtex-5 FGPA User Guide
– http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

• Virtex-5 FPGA XtremeDSP Design Considerations User Guide
– http://www.xilinx.com/support/documentation/user_guides/ug193.pdf

• Virtex-5 FPGA XtremeDSP Design Considerations User Guide
– http://www.xilinx.com/support/documentation/user_guides/ug198.pdf

http://www.xilinx.com/
http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug198.pdf

Implementing Faster FPGA Designs Faster 40

New Video Demos

• Improving Design Performance with PlanAhead
• Optimizing Implementation Results using ExploreAhead
• Improving the FGPA on PCB Integration with PinAhead
• Partial Reconfiguration Design using PlanAhead
• Get the Most Out of Your Design Using XST Synthesis Strategies
• Reduce FPGA Verification Time Using New Simulation Features
• Improve Productivity Using Multiple Constraint Files
• Simplify Entry and Analysis of I/O Timing Constraints
• Improve Time-to-Market Using Partitions and SmartGuide
• Improve DSP and Embedded Design Productivity
• Optimize FPGA Performance Using Goals, Strategies, and SmartXplorer
• Improve Productivity Using the EDA Standard Tool Command Language (Tcl)
• Fine-Tune FPGA Power Budgets Using New Power Analysis and Optimization
• Video demo for XPE: http://www.demosondemand.com/clients/xilinx/001/page/index_destools.asp
• Improve Configuration Ease of Use with Project Navigator and iMPACT

Streaming videos are available at http://www.xilinx.com/design.

http://www.demosondemand.com/clients/xilinx/001/page/index_destools.asp
http://www.xilinx.com/design

	MAPLD��Accelerating FPGA Designs and Design Work: Implementing Faster Designs Faster ��Bryan Penner�Xilinx FAE – Arizona and N
	Agenda
	Agenda
	The Virtex-5 Family
	Continuing the Drive for Innovation
	Virtex-5 Slice with 6-Input LUTs�
	Virtex-5 DSP48E For Efficient DSP
	Virtex-5 Clock Management Tile
	Agenda
	Intro
	Flip-Flops
	Control Priority
	Flip-Flop Controls
	Flip-Flop Controls
	Flip-Flop Controls
	Synchronous Resets
	How to Change to Synchronous Resets
	What’s Better than Synchronous Resets?
	Why No Resets at All?�More Free Logic Even Fewer Control Signals
	Why No Resets at All?�No reset on LUTRAM�
	Why No Resets at All?�Routing Congestion
	FPGAs Enable Massively Parallel DSP
	Parallel Adder Tree Implementation Consumes FPGA resources
	Parallel Implementation Consumes Zero Logic Resources
	Pipelining
	Where to find more information
	Agenda
	Timing Constraints
	Strategy-Based Implementation
	SmartCompile Technology
	PlanAhead: Floorplanning & More
	System Generator and AccelDSP
	Intellectual Property Cores
	Signal Probing with FPGA Editor
	Chipscope Pro Logic Analyzer
	ChipScope Pro Serial IO Toolkit
	Summary
	Appendix
	Where to find more information
	New Video Demos

